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Abstract
A perturbative approach to determining the strain-induced effective interactions in binary alloys
with large atomic size mismatch is presented. Using the chemical energy as the reference state,
the strain-induced energy of the alloy is cast into a many-body (Kanzaki) force expansion that
depends on both the configurational and displacive degrees of freedom. It is shown that the
k-space energy expansion is valid for all wavelengths. The theory is then applied to the Cu3Au
alloy where, due to the large difference between atomic sizes, considerable relaxations are
observed from first-principles calculations. We found that the inhomogeneous contribution
(k �= 0) dominates the strain energy in Cu3Au, whereas the homogeneous part (k = 0),
notwithstanding its configurational dependence, contributes only a few per cent.

1. Introduction

The interdependence between elastic and configurational
degrees of freedom plays a fundamental role in the prediction
of the configurational energetics and thermodynamics of
partially ordered alloys and superlattices with atomic size
mismatch. Particularly, the competition between ordering
and phase separation in alloys is often controlled by the
delicate balance between chemical and elastic interactions, as
evidenced by thermodynamic calculations [1–4] and diffuse
scattering measurements [5]. Elastic interactions have proven
to be all-important in describing the long-period limit in
superlattices [2].

It is customary to describe the alloy configurational energy
as the sum of elastic, chemical, and relaxation terms [3, 6–10].
The elastic energy part corresponds to the homogeneous lattice
distortions. Although in the literature elastic energy is often
taken as solely dependent on the atomic concentration [1, 8, 9],
in general the atomic configuration also makes significant
contribution. The chemical contribution arises from the
configurational degrees of freedom, i.e., from placing the
different atomic species on the ideal sites of a parent lattice
following a pattern σ in a given volume �. The relaxation
term, on the other hand, arises from the energy gain when
the atoms relax inhomogeneously towards their equilibrium
positions. In this way, the relaxation energy couples the alloy
configuration to the displacive degrees of freedom.

The elastic and the relaxation terms, as defined above,
belong to a single contribution that complements the chemical
part. This strain-induced energy is elastic in nature and
depends on the configuration σ = {σi} and the positions
R = {Ri} of the atoms,

Ealloy(σ ,R,�) = Echem(σ ,�) + Estrain(σ ,R,�). (1)

Herein the equilibrium geometry of the system for a given σ

is determined by the condition that the (resulting) forces acting
on individual sites vanish, i.e.,

Fi ≡ −∂ Ealloy

∂Ri
= 0. (2)

In general, a given lattice distortion can always be decomposed
into its homogeneous and inhomogeneous contributions. This
allows the strain-induced energy to be written as

Estrain = EH
strain + E I

strain. (3)

The homogeneous (elastic) contribution EH
strain accounts for the

long-wavelength limit and can be determined by the elastic
constants of the alloy (as functions of the atomic concentration
and configuration). The inhomogeneous part E I

strain, on the
other hand, accounts for the distortion field caused by single
atoms (‘injection energy’), pairs, triplets and higher order atom
clusters in the host lattice. In other words, E I

strain contains all
the many-body strain-induced interactions.
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One could treat all energy contributions implicitly by
cluster expanding Ealloy in terms of concentration-independent
interactions, as the alloy energy is then described in terms
of a complete and orthogonal basis in the configurational
space [11, 12]. In fact, the cluster expansion method has been
successfully applied to a number of systems with moderate
atomic size mismatch [3, 13]. In practice, however, systems
with considerable long-ranged strain-induced interactions
require the inclusion of virtually infinite terms in the
expansion [2, 7, 8, 14, 15]. Most of the previous efforts
and advances in understanding the interplay between the
strain-induced and chemical (configurational) interactions have
considered ad hoc assumptions on the homogeneous and
inhomogeneous contributions to Estrain. Some first-principles
approaches have handled the chemical part within the cluster
expansion method, treating the strain-induced contribution
via the constituent strain energy in the long-wavelength
limit [2, 3].

A rather different approach to the description of the
strain-induced interactions in solids is the Kanzaki force
formalism [15–17]. The two-body Kanzaki force description
of atomic size mismatched alloys has been implemented on
a phenomenological level, in which empirical values for the
elastic constants and the concentration dependence of the
lattice parameters were considered [7, 8, 18, 19]. First-
principles electronic structure approaches have also been
implemented within this two-body scheme [9, 10]. Many-
body strain-induced interactions in alloys, however, have
been rarely considered in the literature [15, 20–24]. In
particular, neither the dependence of many-body strain-
induced interaction on interatomic distances nor the dispersion
laws of their Fourier components have been studied within the
semi-phenomenological or first-principles theories. These are
some of the aims of the present contribution.

In this paper, we present a first-principles microscopic
elasticity (k-space) theory within the framework of the
Matsubara–Kanzaki–Krivoglaz lattice statics [15–17]. The
theory treats both homogeneous (corresponding to the long-
wavelength limit k = 0) and inhomogeneous (k �= 0)
contributions of Estrain on the same footing, thus satisfying
equation (3) and providing results valid in the entire
wavelength range. The strain-induced energy is calculated as a
perturbation of the ideal (chemical) state, coupling seamlessly
the many-body correlation functions (configurational degrees
of freedom) to many-body Kanzaki forces. Within this
framework, deviations of Vegard’s law arise as a natural
consequence of the many-body strain-induced interactions in
EH

strain.
The rest of the paper is organized as follows. In

section 2 we derive a Kanzaki force formalism that includes
the well-known pairwise formulation of the strain-induced
interactions and then we expanded the theory to encompass
nonlinear effects via many-body interactions. Also an explicit
derivation of the two-, three- and four-body strain-induced
interactions is given in terms of the lattice Green function.
A first-principles parametrization beyond pair strain-induced
interactions is presented for Cu–25 at.% Au alloys in section 3.
We close the paper with our concluding remarks.

2. Theory

2.1. General considerations

In the decorated and undistorted lattice, all atoms sit on the
ideal positions R = {R1,R2, . . . ,RN } of the parent lattice
according to the configuration σ = {σR1 , σR2 , . . . , σRN }.
This state defines the chemical contribution for which a
configurational cluster expansion can be written as

Echem =
∑

α

V ασα, with σα =
∏

i∈α

σRi , (4)

where σRi = 1(0) if site Ri is occupied by an A (B) atom. The
V α are the effective cluster interactions associated with cluster
figure α (= empty cluster, point, pairs, triplets, etc).

The strain-induced energy contribution is defined as a
perturbation of the alloy energy—which in the decorated and
unperturbed state is equal to Echem—with respect to a set of
atomic displacements uR from the ideal positions R

Estrain =
∑

Ri

uRi

(
∂ Ealloy

∂uRi

)

0

+ 1

2

∑

Ri ,R j

uT
R j

(
∂2 Ealloy

∂uRi ∂uR j

)

0

uRi + O(3), (5)

where the derivatives are evaluated in the undistorted lattice.
Expression (5) describes the static strain-induced energy
corresponding to an arbitrary atomic displacement field {uRi },
including (mechanically) stable and unstable states.

The first term in equation (5) is the work done upon the
system when the atoms are displaced by uR away from their
ideal lattice positions R. The force on the atom located at
lattice site i , characterized by σi and uRi , is

ϕRi
= −

∑

α �=i

(
∂V α

∂uRi

)

0

σα =
∑

α �=i

ϕα
Ri

σα, (6)

where ϕα
Ri

are the many-body forces associated with a cluster
figure α acting on site i . For two-body forces this results in the
Kanzaki forces (see below) [17].

The second term in the right-hand side of equation (5)
is the potential energy of the distorted lattice, which
can conveniently be expressed in terms of the generalized
Born–von Karman tensor:

ΦR j ,Ri = Φ(0)
R j ,Ri

+
∑

α �=i, j

(
∂2V α

∂uRi ∂uR j

)

0

σα,

= Φ(0)
R j ,Ri

+
∑

α �=i, j

Φα
R j ,Ri

σα. (7)

Using equations (6) and (7), we can write the strain-induced
energy as

Estrain = −
∑

Ri

ϕRi
uRi + 1

2

∑

Ri ,R j

uT
R j

ΦR j ,Ri uRi , (8)

where ϕ are the generalized Kanzaki forces, i.e., the material’s
constants that describe how a solute atom (or a defect) distorts
the host lattice.

Linear microscopic elasticity theory corresponds to a
harmonic approximation, in the uR and σR variables, of
equation (8). The superposition approximation is valid in the

2
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Figure 1. (a) Two-body Kanzaki force on site Ri induced by the
atom at site R j . (b) Three-body Kanzaki force on site Ri , where the
displacement uRi depends on the configuration and location of sites
R j and Rk .

(This figure is in colour only in the electronic version)

harmonic case, i.e., the total distortion generated by a group
of solute atoms is the direct sum of the individual distortions
of the atoms comprising the group [8]. Going beyond the
superposition (harmonic) approximation translates into many-
body strain-induced interactions. Anharmonic effects can be
first observed in a third-order expansion of equation (8):

Estrain ≈ 1
2

∑

Ri ,R j

uT
Ri

Φ(0)
R j ,Ri

uR j −
∑

Ri ,R j

ϕ
(2)
R j ,Ri

uRi σR j

−
∑

Ri ,R j ,Rk

ϕ
(3)
Rk ,R j ,Ri

uRi σR j σRk . (9)

Note that the strain-induced energy has the full rotational
and translational symmetry of the crystal structure, therefore
the expansion coefficients depend only on differences of the
atomic positions, i.e.,

ϕ
(2)
R j ,Ri

= ϕ
(2)
R j ,Ri

R j − Ri

|R j − Ri | (10)

with ϕ
(2)
R j ,Ri

≡ ϕ
(2)
R j −Ri

as the force on site Ri induced by the
atom at site R j (figure 1(a)). The three-body Kanzaki forces
are written in a similar fashion:

ϕ
(3)
Rk,R j ,Ri

= ϕ
(3)
Rk ,R j ,Ri

R j − Ri

|R j − Ri | , (11)

where, as in the case of two-body forces, ϕ
(3)
Rk ,R j ,Ri

≡
ϕ

(3)
R j −Ri ,Ri −Rk

. Many-body Kanzaki forces account for the
nonlinear effects in elastically inhomogeneous crystals, i.e.,
the change of the crystal lattice misfit caused by the strain
generated in a neighbourhood of the solute atom at site
R j . The physical picture corresponds closely to that of a
solute atom at site Ri affected by the ‘polarization’ strain
produced in the neighbourhood of an atom sitting on R j .
In the case of three-body Kanzaki forces, the lattice misfit
(the polarization strain) is caused by the presence of an
atom at site Rk (see figure 1(b)). The analogy between the
strain-induced interactions and the dipole–dipole interaction of
molecules can be taken further: in both cases the absence of
polarizability leads to purely pairwise interaction that decays
as r−3 with separation distance. Similar to van der Waals
interaction in molecules, generated by the polarization-induced
dipole momentum, the misfit polarization produces many-body
interactions [26].

As a last comment on the three-body Kanzaki forces
(schematically depicted in figure 1(b)), we note that the direct
force contribution on site Ri induced by an atom at Rk is
already contained in the second term of the right-hand side
of equation (9). By definition, many-body Kanzaki forces
associated with a cluster figure α do not contain contributions
from any of the subclusters (β ∈ α).

2.2. Homogeneous strain energy and Vegard’s law

The mechanical state of a crystal lattice can be thought of as
the confluence of the two different types of strains. One is
the homogeneous strain that describes the shape deformation
of the crystal. The second type of strain accounts for the
(local) inhomogeneous part of the displacement field and it
does not produce any macroscopic effects. A general static
displacement uR can therefore be written as

uR = εR + vR, (12)

where ε is a tensor associated with a homogeneous distortion
and the inhomogeneous displacement field vR is defined so as
to vanish at the crystal boundary [8].

The (mechanical) equilibrium state of Estrain can be
expressed as follows:

Eeq
strain = − 1

2

∑

Ri ,R j

ϕ
(2)
R j ,Ri

uRi σR j

− 1
2

∑

Ri ,R j ,Rk

ϕ
(3)
Rk ,R j ,Ri

uRi σR j σRk , (13)

which can be used together with equation (12) to obtain the
averaged homogeneous and inhomogeneous contributions to
the strain-induced energy:

〈EH
strain〉 = −cε

2

∑

Ri ,R j

ϕ
(2)
R j ,Ri

|R j − Ri |

− ε

2

∑

Ri ,R j ,Rk

ϕ
(3)
Rk ,R j ,Ri

|R j − Ri |〈σR j σRk 〉, (14a)

〈E I
strain〉 = − c

2

∑

Ri ,R j

ϕ
(2)
R j ,Ri

vRi

− 1
2

∑

Ri ,R j ,Rk

ϕ
(3)
Rk ,R j ,Ri

vRi 〈σR j σRk 〉, (14b)

3
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where c is the atomic concentration. Note that EH
strain offers a

connection with classical elasticity theory [8], since

〈EH
strain〉 = − 3

2 N�ε2(C11 + 2C12) (15)

for a cubic disordered alloy system with elastic constants
C11 and C12, and unit-cell volume �. The concentration
dependence of equation (15) becomes apparent in combination
with equation (14a), then

3�ε(C11 + 2C12) = c
∑

Ri ,R j

ϕ
(2)
R j ,Ri

|R j − Ri |

+
∑

Ri ,R j ,Rk

ϕ
(3)
Rk,R j ,Ri

|R j − Ri |〈σR j σRk 〉. (16)

For a cubic crystal, ε is proportional to the lattice constant.
The first term in the right-hand side of equation (16) is the
well-known Vegard’s law, i.e., the linear dependence of the
lattice constant with the atomic concentration associated with
pairwise Kanzaki forces. The second term of equation (16)
accounts for the many-body corrections responsible for the
deviations of Vegard’s law.

2.3. Strain-induced interactions in reciprocal space

The long-range nature of the elastic interactions is better
represented in reciprocal space. For this, we cast the strain-
induced energy of equation (9) into reciprocal space using a
Fourier transform:

Estrain = 1

2N

∑

k

uT
kΦ

(0)
k u∗

k − 1

N

∑

k

ϕ
(2)
k ukσ

∗
k

− 1

N2

∑

k,q

ϕ
(3)
k,qukσqσ

∗
k+q, (17)

where the sums are over the first Brillouin zone (the exact form
of the Fourier components of the two-and three-body Kanzaki
forces can be found in the appendix). From the equilibrium
condition of Estrain with respect to the atomic displacements
uk, we find

Φ(0)
k u∗

k = ϕ
(2)
k σ ∗

k + 1

N

∑

q

ϕ
(3)
k,qσqσ

∗
k+q, (18)

which allows us to determine the equilibrium state of the strain-
induced energy

Eeq
strain = − 1

2N

∑

k

ϕ
(2)
k ukσ

∗
k − 1

2N2

∑

k,q

ϕ
(3)
k,qukσqσ

∗
k+q.

(19)
By introducing the lattice Green’s function Gk [25],

Φ(0)
k Gk = I(1 − δk,0), (20)

where I is the identity matrix and δk,0 is the Kronecker delta
function. The Fourier transform of the atomic displacements
associated with the inhomogeneous relaxations (k �= 0) can be
represented as:

uk = G∗
kϕ

(2)∗
k σk + 1

N

∑

q

G∗
kϕ

(3)∗
k,q σ ∗

q σk+q. (21)

Combining equations (21) and (19), the averaged inhomoge-
neous strain energy can be written in terms of the Fourier

components of the many-body strain-induced interactions as
follows:

〈E I
strain〉 = −cQ + 1

N

∑

k

V (2)
k 〈σkσ

∗
k 〉

+ 1

N2

∑

k,q

V (3)
k,q〈σkσqσ

∗
k+q〉

+ 1

N3

∑

k,q,q′
V (4)

k,q,q′ 〈σk+q′σ ∗
q′σqσ

∗
k+q〉, (22)

where
V (2)

k = − 1
2ϕ

(2)T
k G∗

kϕ
(2)∗
k + Q, (23a)

V (3)
k,q = −ϕ

(3)T
k,q G∗

kϕ
(2)∗
k , (23b)

V (4)
k,q,q′ = − 1

2ϕ
(3)T
k,q G∗

kϕ
(3)∗
k,q′ , (23c)

are the Fourier components of the two-, three-, and four-body
strain-induced interactions, respectively. The real-space self-
action correction [8] (i.e., V (2)

R j −Ri =0 ≡ 0) is introduced in the

two-body interactions V (2)
k as

Q = 1

2N

∑

k

ϕ
(2)T
k G∗

kϕ
(2)∗
k . (24)

The many-body strain-induced interactions have some
characteristics that deserve discussion. First, the three-body
strain-induced interaction, equation (23b), does not satisfy the
invariance condition for the exchange of wavevectors k and q
in contrast to the three-body interaction introduced within the
lattice gas model [27, 28]. Additionally, in the case of the four-
body strain-induced interaction the combination of indexes in
the product σk+q′σ ∗

q′σqσ
∗
k+q in equation (22) does not follow

the standard combination obtained within the lattice gas model.

3. First-principles parametrization of many-body
Kanzaki forces in Cu3Au

3.1. Computational details

The ab initio calculations of the unrelaxed and fully relaxed
energies for Cu3Au alloys were performed using a mixed-
basis plane-wave pseudopotential (MBPP) implementation as
encoded in the Stuttgart package [29]. The MBPP code is
particularly well suited for describing the electronic properties
of metallic alloys, since the approach successfully combines
the merits of plane-wave pseudopotential methods with an
atomic-like basis. This characteristic makes the MBPP
computationally efficient, requiring only a few plane waves to
achieve converged results. For our present calculations of Cu,
Au and their alloys, we have used a 270 eV plane-wave energy
cut-off and five local orbitals of d character per atom. The local
orbitals were constructed by trimming the atomic pseudowave
function beyond a cut-off radius of 2.10 and 2.25 au for Cu and
Au atoms, respectively. This radius was chosen to allow for
structural relaxations in Cu–Au alloys. Valence electrons were
represented by norm-conserving, nonlocal pseudopotentials.

In all the calculations, a local density approximation
(LDA) to the exchange and correlation energy as proposed
by Ceperley and Alder [30] was used. The electron densities

4
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were calculated in a Fourier representation enclosing plane
waves up to 410 eV. The k-point mesh integration was done
using a special set of points as provided by the Moreno–
Soler scheme [31] together with a Gaussian broadening of
0.1 eV. Using an equivalent set of k points guarantees the
best possible cancellation of errors when computing energy
difference between isostructural compounds. In addition,
its has been shown that equivalent k-point convergence is
faster than absolute convergence [32]. A grid of 12 × 12 ×
12 k points for the simple cubic L12 unit cell was used
in all calculations or denser when this k-point mesh was
incommensurate with the periodicity of the structure. With the
above parameters, relative energies (with respect to the L12

structure) were numerically converged to within 1 meV/atom.
To test LDA accuracy, we also carried out calculations within
the generalized-gradient approximation in the Perdew–Burke–
Ernzerhof parametrization [33] for selected structures; and
qualitatively we found the same trends as in the LDA data.

For the dynamical matrix Φ(0), we have used the
expression suggested by Krivoglaz (fcc lattices) [15]:



(0)

k,xx = aC11
(
2 − cos(akx/2)[cos(aky/2) + cos(akz/2)])

+ a(2C44 − C11)[1 − cos(aky/2) cos(akz/2)], (25a)



(0)
k,xy = a(2C12 − C44) sin(akx/2) sin(aky/2), (25b)

where a represents the lattice constant and C11, C12, C44 are
the elastic constants. The other components of the dynamical
matrix are obtained by cyclic permutation of indices. It is
possible to keep the parametrization of the strain-induced
interactions within first principles by calculating the dynamical
matrix using, for example, a density-functional perturbation
theory [34]. However, for the sake of simplicity, we have
used expression (25) to parametrize the dynamical matrix. This
choice can be justified for close-packed lattices as the phonon
spectra are easy to reproduce with rather simple models—
as opposed to body-centred cubic materials where phonon
softening plays a subtle and complicated role. We have
compared the phonon spectrum predicted by equation (25)
with the experimental data [35] with rather good agreement.
For such comparison, we used our calculated LDA values for
the lattice constant a = 3.7 Å and the elastic constants (i.e.,
C11 = 238, C12 = 159, C44 = 87 GPa) for Cu3Au in the L12

phase.

3.2. Structure selection

The structure selection was directed by the Lifshitz theorem,
which states that every periodic function in the reciprocal
space exhibits extrema at the high symmetry points. Structures
at high symmetry lines are also of particular importance,
since structural instabilities and main features of the phase
diagrams are determined by the extrema of the reciprocal-
space interactions (Landau theory) [36]. Our set of input
structures contains three Lifshitz structures (i.e., L12, D022,
CuPt3-like) and 13 special structures along the high symmetry
[100], [110], [111] directions and between the X and W
points in the Brillouin zone [36]. The spacing between
[100] and [110] superlattice structures along the same line
is 1

4 reciprocal-lattice units. Superlattice structures along

Figure 2. First Brillouin zone for a face-centred lattice. Ordered and
superlattice structures used in the first-principles calculations were
selected along high symmetry directions, i.e., [100], [110], [111] and
along the lines connecting the X and W points on the edge of the
zone. The spacing between the structures along each line is 1

4
reciprocal-lattice units. Structures along the �–L direction are
spaced 1

8 reciprocal-lattice units (cf table 1).

the [111] direction are spaced 1
8 reciprocal-lattice units (see

figure 2). For example, structures with Cu3Au periodicity
along the [100], [110], [111] directions are denoted by Z1,
Y1, and V1, respectively [37]. Superlattice structures with
Cu6Au2 periodicity are denoted as �–X1, �–K1, and �–
L1, respectively for the [100], [110], [111] directions. The
same nomenclature applies for the Cu5AuCuAu (�–X2, �–
K2, �–L2) and Cu4AuCu2Au (�–X3, �–K3, �–L3) superlattice
structures. All structures have been studied previously in the
literature and their crystallographic information is available
elsewhere [3, 8, 36, 37].

We used the MBPP method to calculate the total energy of
the 16 fcc-based Cu3nAun ordered structures described above.
For the fully relaxed calculations, all the crystal parameters
were optimized, either by minimizing the total energy against
the proper distortion, e.g., volume or the c/a ratio, and by
minimizing the forces on the atoms with positions not fixed
by symmetry. The atomic positions were relaxed using the
Broyden–Fletcher–Goldfarb–Shanno method [38], achieving
an accuracy of 3 meV Å

−1
. Table 1 summarizes the results

of the calculations.

3.3. Homogeneous and inhomogeneous contributions to the
strain energy

Using the theory developed in section 2, we have expanded the
strain-induced energy of Cu3Au alloys in terms of many-body
Kanzaki forces with respect to the L12 ground state (chemical
reference state). In this way, we focused only on the strain-
induced energy without losing any generality. The chemical
part of the alloy energy can be described in a straightforward
manner by cluster expanding the unrelaxed energies in terms
of concentration-independent interactions.

We have assessed the quality of the expansion by
systematically including many-body Kanzaki forces as a
function of the distance. In all cases, we observed that
the Kanzaki forces converged very quickly with distance and
number of points in the cluster figures, e.g., clusters involving

5
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Table 1. Relaxation energy �EDFT (in meV/atom) for fcc-based
ordered Cu–Au compounds as calculated with the MBPP using the
LDA for the xc potential. DFT energy for each structure is quoted
relative to its strained state with the L12 lattice constant. The
inhomogeneous part to the strain-induced energy has been split into
the pairwise 〈E I(2)

strain〉 and three plus four-body 〈E I(3+4)

strain 〉 contributions
(see footnote 4). The last column stands for the fitting error for each
individual structure. The root mean squared error for the entire set is
4 meV/atom. See [3, 8], and [36] for a detailed crystallographic
description of the different ordered and superlattice structures.

Structure �EDFT 〈E I(2)

strain〉 〈E I(3+4)

strain 〉 〈EH
strain〉 Error

L12 0.0 0.0 0.0 0.0 0.0
D022 0.1 0.0 0.0 0.0 0.1
CuPt3 −1.5 0.0 0.0 −1.7 −0.2
Y1 −74.1 −71.3 0.8 −3.4 0.2
�–X1 −177.8 −151.9 −23.4 −6.8 −4.3
�–X2 −76.4 −76.0 1.2 −3.4 −1.8
�–X3 −73.9 −71.4 0.8 −3.4 −0.1
Z1 −28.7 −26.1 0.3 −1.7 1.2
�–K1 −112.6 −93.6 −8.1 −5.1 5.8
�–K2 −59.9 −47.4 −1.1 −2.6 8.8
�–K3 −30.3 −27.4 0.4 −1.7 1.6
V1 −68.3 −64.5 2.3 −5.1 1.0
�–L1 −157.5 −128.4 −14.4 −7.6 7.1
�–L2 −60.6 −64.2 2.2 −5.1 −6.5
�–L3 −62.3 −64.5 2.3 −5.1 −5.0
D023 0.1 −0.2 0.0 0.0 −0.1

Table 2. Two- and three-body Kanzaki forces in meV Å
−1

for the
Cu3Au alloy system.

Two-body Three-body

ϕ
(2)
1 = 627.0 ϕ

(3)
1 = 88.7

ϕ
(2)

2 = 61.3 ϕ
(3)

2 = −3.5

ϕ
(2)

3 = −1.4 ϕ
(3)

3 = −8.3

ϕ
(3)

4 = 9.5

atoms in the fourth coordination shell have Kanzaki forces of
the order 10 meV Å

−1
(see table 2). A precise expansion for

Cu3Au includes three pairwise and four three-body Kanzaki
forces (cf figure 3 and table 2)3.

We have split the strain-induced energy of all the
input Cu3nAun structures into their homogeneous (k =
0) and inhomogeneous (k �= 0) contributions. Previous
attempts to describe the elastic interactions in binary alloys
treated the homogeneous contribution as independent of the
configurational degrees of freedom [1, 8, 9]. In general, this
is not the case, as can be seen in equation (14a). Interestingly
enough, 〈EH

strain〉 is not the most important contribution to the
alloy strain-induced energy in Cu3Au. This can be appreciated
in table 1, where the homogeneous part of 〈Estrain〉 is displayed
in the fifth column. For all the structures considered here,
〈EH

strain〉 is less than 8 meV/atom and usually represents only
a minor fraction of Estrain. Exceptions appear for structures

3 The use of cross-validatory approaches [39] and large input databases could
produce slightly different results. However, due to the nature of the forces (and
interactions) involved in the strain-induced energy, we are convinced that only
quantitative but not qualitative differences will arise in that case. In order to
illustrate the use of the theory, our selected input database and cluster figures
should be accurate enough.

1 2

3

4

1

2

3

Three-body

Two-body

Figure 3. Pair and three-body cluster figures used in the calculation
of the many-body Kanzaki forces.

without internal atomic degrees of freedom, such as the CuPt3-
type structure, where the homogeneous part constitutes the
only contribution to the strain-induced energy.

The main contribution to the strain-induced energy comes
from the inhomogeneous part 〈E I

strain〉. In table 1, we have
decomposed the inhomogeneous part into the pair 〈E I(2)

strain〉 and
many-body (three plus four-body) 〈E I(3+4)

strain 〉 contributions. As
expected, in all cases the many-body contribution is smaller
than the pairwise contribution4. 〈E I(3+4)

strain 〉 is very small for
structures Z1, Y1, and V1; that is, for short-period A3B-
superlattice structures in the [100], [110], and [111] directions,
respectively. The opposite occurs for the Cu6Au2 long-
period structures along the same directions: for the structures
�–X1, �–K1 and �–L1, ∼95% of strain-induced energy
originates from the inhomogeneous part. In other words,
the latter structures correspond to wavevectors located along
high symmetry lines in the neighbourhood of the � point (see
figure 2).

An analysis of the atomic arrangements in the three-body
cluster figures (figure 3) together with the Kanzaki forces
reported in table 2 shows that three-body Kanzaki forces
corresponding to in-line atomic arrangements are the most
important ones (e.g., three-body cluster figures 1 and 4 in
figure 3).

3.4. Fourier analysis of the strain-induced interactions

In figure 4, we show the main strain-induced interactions
associated with the Kanzaki forces (cf table 2 and figure 3).
Note that the two-body strain-induced interaction of Cu3Au
shows a rather simple structure everywhere but at the �

point. This is also true for the three-body interactions that are
non-analytic for all fixed wavevectors q0 (in figure 4(b), we
show the dispersion curves for the three-body strain-induced
interaction for q0 at the high symmetry points �, X, W, and L).

One can analyse the impact of approximating a non-
analytical function such as V (2)

k by a finite number of real-space
terms—as often occurs in concentration-independent cluster
expansions—by monitoring the behaviour of

V (2)
k =

n∑

i=1

V (2)
Ri

exp(ik · Ri), (26)

4 For Cu3Au, four-body interactions are at least one order of magnitude
smaller than the three-body interactions.
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Figure 4. Fourier component of (a) two-body and (b) three-body
strain-induced interactions. The dispersion curves of all interactions
display a non-analytic behaviour around the � point for the two-body
interactions and for fixed values of the wavevector q0 (=X (open
circles), W (filled circles), L (open squares), and � (filled squares))
for the three-body interactions. (c) Truncation error for a real-space
expansion of the strain-induced interactions (cf equation (26)) using
10 coordination shells (filled circles) and 100 coordination shells
(open circles). Note that the error peaks at the � point but extends far
in the Brillouin zone, e.g., all the way along the �–X, �–L, and �–K
directions (cf figure 2).

i.e., the Fourier expansion of V (2)
k , as a function of the number

of terms n. In figure 4(c) we have plotted the residuals of the
expansion (26) for n = 10 and 100. Notice that even for a
large number of terms (n = 100), the expansion has an error of
∼100–150 meV in the vicinity of the � point. This truncation
error decreases slowly as the number of terms in the real-space
expansion increases. This can be crucial in the case of phase-
separating systems, where the structure formation is dominated
by the long-wave interactions (i.e., k, q → �).

4. Summary and conclusions

We have developed a perturbative approach to the strain-
induced effects in binary alloys. In the theory, the strain-
induced energy is expressed in terms of many-body Kanzaki
forces that are coupled to the many-body atomic correlation
functions. The conceptual simplicity of our approach allows

the use of state-of-the-art ab initio calculations to determine
effective elastic many-body interactions.

In praxis, the strain-induced energy is expanded with
respect to a given unrelaxed (chemical) state, e.g., the L12

in a A3B fcc-based alloy. The Kanzaki force parameters are
determined by fitting Estrain to the energy of a set of structures
consistent with the reference-state concentration. Since the
strain-induced energy is long-ranged, sensitive choices for
the input structures are superlattice structures with varying
periodicities along the main crystallographic directions. A
cluster expansion of the unrelaxed reference state will render
concentration-independent effective cluster interactions with
good convergence properties. In this way, a complete ab initio
parametrization of the alloy energy can be achieved.

We have applied the theory and the above procedure
to Cu3Au alloys. On the basis of LDA first-principles
calculations, we found that the Kanzaki forces exhibit fast
convergence with the interatomic distance and number of
points in the associated cluster figures. The many-body
contributions to the relaxation energy, however, strongly
depend on the local atomic environment. Structures with pure-
Au neighbouring layers display the most pronounced many-
body elastic effects.

We have found that the dominant contribution to the strain-
induced energy of Cu3Au originates from the inhomogeneous
distortions, that is, from the local displacement field vR. Less
than 5% of the elastic energy of Cu3Au is associated with the
uniform static displacement field that is responsible, in turn, for
the (macroscopic) changes of the crystal shape. Moreover, our
results show that the homogeneous part of the strain-induced
energy is barely sensitive to the state of order in Cu–25 at.% Au
compounds. All these facts together provide a first-principles
explanation of an intriguing and long-standing experimental
observation. Cu3Au undergoes a first-order transition from
the ordered L12 to the disordered fcc structure at 660 K.
X-ray measurements in Cu3Au alloys have shown that the
lattice parameter is virtually constant across the order–disorder
transition, regardless the large atomic size mismatch between
Cu and Au [40].

We have investigated the dispersion curves of the resulting
strain-induced interactions in Cu3Au. Our analysis showed that
two-body V (2)

k interactions are non-analytical at the point k =
�. This is also true for the three-body V (3)

k,q interactions that are
discontinuous for every fixed wavevector q0. Therefore, a real-
space expansion of the strain-induced interactions necessarily
provides an incomplete description, not only at the �-point
itself but also far in the Brillouin zone (e.g., all the way
to the X, L, and K points at the zone boundary). In
other words, a real-space expansion of the strain-induced
interactions in Cu3Au smears out the non-analyticity around
the � point (this can be observed even for cluster expansions
with concentration-independent effective cluster interactions
involving 100 coordination shells).

An analysis of the alloy configurational and elastic inter-
actions in terms of Kanzaki forces renders a set of parameters
with an immediate physical meaning. Consequently, a Kan-
zaki force expansion has a convergence radius (i.e., forces as-
sociated with compact cluster figures dominate over the long-
ranged cluster figures with many vertices), in contrast to the

7
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concentration-independent cluster expansion. The many-body
strain-induced interactions can be used together with statisti-
cal mechanics models in the description of thermodynamic and
structural properties of atomic size mismatch systems [41]. Fi-
nally, the developed theory can be fully ab initio if the dynam-
ical matrix is calculated using density-functional perturbation
theory.
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Appendix. Fourier components of two- and
three-body Kanzaki forces

The strain-induced energy is expressed in terms of the many-
body Kanzaki forces. In their reciprocal-space form, these
many-body forces can be expressed in terms of the lattice
constant a and the components of the wavevector k as
follows:

ϕ
(2)
1 (k) = −i2

√
2ϕ

(2)
1

×

∥∥∥∥∥∥∥

[
cos( a

2 ky) + cos( a
2 kz)

]
sin( a

2 kx)[
cos( a

2 kx) + cos( a
2 kz)

]
sin( a

2 ky)[
cos( a

2 kx) + cos( a
2 ky)

]
sin( a

2 kz)

∥∥∥∥∥∥∥
, (A.1)

ϕ
(2)

2 (k) = −i2ϕ
(2)

2

∥∥∥∥∥∥

sin(akx)

sin(aky)

sin(akz)

∥∥∥∥∥∥
, (A.2)

ϕ
(2)

3 (k) = −i

√
2

3
ϕ

(2)

3

×

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin
[

a
2 (kx−ky−2kz)

]+ sin
[

a
2 (kx+ky−2kz)

] +
sin

[
a
2 (kx−2ky−kz)

]+2 sin
[

a
2 (2kx−ky−kz)

] +
2 sin

[
a
2 (2kx+ky−kz)

] + sin
[

a
2 (kx+2ky−kz)

] +
sin

[
a
2 (kx−2ky+kz)

]+2 sin
[

a
2 (2kx−ky+kz)

] +
2 sin

[
a
2 (2kx+ky+kz)

] + sin
[

a
2 (kx+2ky+kz)

] +
sin

[
a
2 (kx−ky+2kz)

]+ sin
[

a
2 (kx+ky+2kz)

]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

−

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin
[

a
2 (kx−ky−2kz)

] − sin
[

a
2 (kx+ky−2kz)

] +
2 sin

[
a
2 (kx−2ky−kz)

]+ sin
[

a
2 (2kx−ky−kz)

] −
sin

[
a
2 (2kx+ky−kz)

] −2 sin
[

a
2 (kx+2ky−kz)

]+
2 sin

[
a
2 (kx−2ky+kz)

]+ sin
[

a
2 (2kx−ky+kz)

] −
sin

[
a
2 (2kx+ky+kz)

] −2 sin
[

a
2 (kx+2ky+kz)

]+
sin

[
a
2 (kx−ky+2kz)

] − sin
[

a
2 (kx+ky+2kz)

]

⎫
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⎪⎪⎪⎪⎪⎪⎪⎪⎭

−

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
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2 sin
[

a
2 (kx−ky−2kz)

]+2 sin
[

a
2 (kx+ky−2kz)

] +
sin

[
a
2 (kx−2ky−kz)

] + sin
[

a
2 (2kx−ky−kz)

] +
sin

[
a
2 (2kx+ky−kz)

] + sin
[

a
2 (kx+2ky−kz)

] −
sin

[
a
2 (kx−2ky+kz)

] − sin
[

a
2 (2kx−ky+kz)

] −
sin

[
a
2 (2kx+ky+kz)

] − sin
[

a
2 (kx+2ky+kz)

] −
2 sin

[
a
2 (kx−ky+2kz)

]−2 sin
[

a
2 (kx+ky+2kz)

]

⎫
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,

(A.3)

ϕ
(3)
1 (k, q) = −i

√
2ϕ

(3)
1

×

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

⎧
⎪⎪⎪⎨
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sin
[

a
2 (kx − qx + ky − qy)

]+
sin

[
a
2 (kx − qx − ky + qy)

]+
sin

[
a
2 (kx − qx + kz − qz)
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sin

[
a
2 (kx − qx − kz + qz)

]

⎫
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⎪⎪⎪⎭
⎧
⎪⎪⎪⎨
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sin
[

a
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[
a
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[
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]

⎫
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⎧
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×
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⎧
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sin
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Honkimäki V 2005 Phys. Rev. Lett. 95 235703

[6] Cook H E and de Fontaine D 1969 Acta Metall. 17 915
Cook H E and de Fontaine D 1971 Acta Metall. 19 607

[7] de Fontaine D 1979 Solid State Phys. 34 73
[8] Khachaturyan A G 1983 Theory of Structural Transformations

in Solids (New York: Wiley)
[9] de Gironcoli S, Giannozzi P and Baroni S 1991 Phys. Rev. Lett.

66 2116
[10] Beiden S V and Vaks V G 1992 Phys. Lett. A 163 209

Beiden S V, Samolynk G D, Vaks V G and Zein N E 1994
J. Phys.: Condens. Matter 6 8487

[11] Sanchez J M, Ducastelle F and Gratias D 1984 Physica A
128 334

[12] Sanchez J M 1993 Phys. Rev. B 48 14013
[13] de Fontaine D 1994 Solid State Phys. 47 33
[14] Lu Z W, Laks D B, Wei S-H and Zunger A 1994 Phys. Rev. B

50 6642
[15] Krivoglaz M A 1996 X-Ray and Neutron Diffraction in

Nonideal Crystals (Berlin: Springer)
Krivoglaz M A 1962 Fiz. Tverd. Tela 4 2840
Krivoglaz M A 1967 Fiz. Tverd. Tela 9 2861

[16] Matsubara T 1952 J. Phys. Soc. Japan 7 270
[17] Kanzaki H 1957 J. Phys. Chem. Solids 2 24

Kanzaki H 1966 Tech. Rep. ISSP A 232 14
[18] Blanter M S 1994 Phys. Status Solidi b 181 377
[19] Hoffman D W 1970 Acta Metall. 18 819
[20] Shirley C G 1974 Phys. Rev. B 10 1149
[21] Oates W A and Stoneham A M 1983 J. Phys. F: Met. Phys.

13 2427
[22] Shirley A I and Hall C K 1986 Phys. Rev. B 33 8084

Shirley A I and Hall C K 1986 Phys. Rev. B 33 8099
[23] Belashchenko K D, Pankratov I R, Samolyuk G D

and Vaks V G 2002 J. Phys.: Condens. Matter 14 565

[24] Bugaev V N, Reichert H, Shchyglo O, Udyansky A,
Sikula Y and Dosch H 2002 Phys. Rev. B 65 180203(R)

[25] Born M and Huang K 1998 Dynamical Theory of Crystal
Lattices (Oxford: Clarendon)

[26] Khachaturyan A G, Semenovskaya S and Tsakalakos T 1995
Phys. Rev. B 52 15909

[27] Lee T D and Yang C N 1952 Phys. Rev. 87 410
[28] Bugaev V N and Chepulskii R V 1995 Acta Crystallogr. A

51 456
Bugaev V N and Chepulskii R V 1995 Acta Crystallogr. A

51 463
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